Q	Question		Answer	Marks	Guidance
1	(a)	(i)	1 mol dm ⁻³ Fe ²⁺ (aq) 1 mol dm ⁻³ Fe ²⁺ (aq) 1 mol dm ⁻³ Fe ³⁺ (aq) Pt metal Ag metal	4	
			Half-cells (2 marks) Ag(s) and 1 mol dm ⁻³ Ag ⁺ (aq) \checkmark 1 mol dm ⁻³ Fe ²⁺ (aq) AND 1 mol dm ⁻³ Fe ³⁺ (aq) AND Pt metal \checkmark Complete circuit (1 mark)		
			salt bridge AND voltmeter AND wires ✓		
			Standard conditions (1 mark) 298 K / 25 °C AND 100 kPa / 101 kPa pressure ✓		ALLOW 1 atm
		(ii)	(Electrode potential of) Ag ⁺ /Ag becomes more positive \checkmark therefore, E_{cell} becomes smaller OR less positive. \checkmark	2	ALLOW equilibrium Ag/Ag ⁺ shifts to right ALLOW more negative 2 nd mark only available if deduced from 1 st mark ALLOW ECF for 2 nd mark

Question	Answer	Marks	Guidance
(b)	Ce^{3+} and $Zn^{2+} \checkmark$	1	
(c)	Mn ²⁺ , H ₂ O, Fe ³⁺ , Br ₂ Three species correct \checkmark Four species correct \checkmark	2	
	Total	9	

Question	Answer	Marks	Guidance
2	C	1	

OCR (A) Chemistry A-Level - Redox and Electrode Potentials

Q	Question		Answer	Marks	Guidance
3	(a)	(i)	Circuit:complete circuit AND voltmeter AND labelled salt bridge linking two half-cells \checkmark Half cells:Pt AND Fe ²⁺ AND Fe ³⁺ \checkmark Zn AND Zn ²⁺ \checkmark	4	Electrodes / salt bridge must at least touch the surface ALLOW small gaps in circuit wires ALLOW half cells drawn either way around
		(ii)	Standard conditions: 1 mol dm ⁻³ (solution(s)) AND 298 K / 25°C ✓ 1.53 (V) ✓	1	ALLOW 1 mol/dm ³ OR 1 M ALLOW 1 mol dm ⁻³ /1M if omitted here but shown for just one solution in diagram IGNORE pressure DO NOT ALLOW 1 mol(e) for concentration
		``	()		
	(b)		strongest reducing agent. $Zn \checkmark$ strongest oxidising agent. $MnO_4^- \checkmark$	2	NOTE : H ⁺ has been ignored
	(c)		AWARD 2 marks for correct balancing AND all species cancelled on both sides of equation: $2MnO_4^- + 6H^+ + 5SO_3^{2-} \rightarrow 2Mn^{2+} + 3H_2O + 5SO_4^{2-} \checkmark \checkmark$ AWARD 1 mark for correct balancing but not all species (H ₂ O, H ⁺) cancelled on both sides of equation \checkmark e.g. $2MnO_4^- + 16H^+ + 5SO_3^{2-} + 5H_2O$ $\rightarrow 2Mn^{2+} + 8H_2O + 5SO_4^{2-} + 10H^+$	2	ALLOW correct multiples e.g. $MnO_4^- + 3H^+ + 2\frac{1}{2}SO_3^{2-} \rightarrow Mn^{2+} + 1\frac{1}{2}H_2O + 2\frac{1}{2}SO_4^{2-}$ IGNORE state symbols e.g. $MnO_4^- + 8H^+ + 2\frac{1}{2}SO_3^{2-} + 2\frac{1}{2}H_2O \rightarrow Mn^{2+} + 4H_2O + 2\frac{1}{2}SO_4^{2-} + 5H^+$
			Total	9	

C	Question		Answer	Marks	Guidance
4	(a)	(i)	(<i>rate</i> =) k [H ₂ O ₂] [I [−]] ✓	3	Square brackets required IGNORE any state symbols IGNORE [H ⁺] ⁰
			$k = \frac{rate}{[H_2O_2][I^-]} = \frac{2.00 \times 10^{-6}}{0.0100 \times 0.0100} = 0.02(00) \checkmark$ units: dm ³ mol ⁻¹ s ⁻¹ \checkmark		ALLOW ECF from incorrect rate equation BUT units must fit with rate equation used ALLOW mol ⁻¹ dm ³ s ⁻¹ OR in any order NOTE K_c expression with calculation and units 0 marks
	(a)	(ii)	Plot graph using ln k AND $1/T \checkmark$	3	Unless otherwise stated, assume, that In <i>k</i> is on y axis and 1/ <i>T</i> is on x axis IGNORE intercept
			 (Measure) gradient ✓ <i>Independent mark</i> <i>E</i>_a = (-)<i>R</i> × gradient OR (-)8.314 × gradient ✓ <i>Independent mark, even if variables for graph are incorrect</i> <i>Subsumes 'gradient' mark</i> 		ALLOW gradient = $(-)\frac{E_a}{R}$ NOTE: ALLOW 'Inverse graph' (special case) Plot graph of 1/ <i>T</i> against ln $k \checkmark$ (Measure) gradient \checkmark Independent mark $E_a = (-)\frac{R}{\text{gradient}} \text{ OR } (-)\frac{8.314}{\text{gradient}}$
					Subsumes 'gradient' mark

Question	Answer	Marks	Guidance
(b)	ALLOW equilibrium sign in equations provided reactants on left	4	ALLOW correct multiples IGNORE state symbols
	Departies of U.O. with Mr.O.		ALLOW uncancelled H ₂ O and H ⁺ H ₂ O ₂ + MnO ₂ + 4H ⁺ \rightarrow O ₂ + Mn ²⁺ + 2H ₂ O + 2H ⁺
	Reaction of H_2O_2 with MnO_2 : $H_2O_2 + MnO_2 + 2H^+ \rightarrow O_2 + Mn^{2+} + 2H_2O \checkmark$ Reaction of H_2O_2 with Mn^{2+} : $H_2O_2 + Mn^{2+} \rightarrow MnO_2 + 2H^+ \checkmark$		$H_2O_2 + Mn^{2+} + 2H_2O + 2H^* \rightarrow MnO_2 + 4H^* + 2H_2O$
	Use of <i>E</i> data Use of <i>E</i> data to support equation(s) above or half direction of provided half equations (one including MnO ₂) ✓ Also look for evidence around half equations		 Examples More negative <i>E</i> moves to left ORA Reduction half equation to the right ORA Most positive <i>E</i> is reduced ORA Calculated <i>E</i> cell = +0.81 V (from top 2) OR +0.27 V (from bottom 2)
	MnO₂ regenerated/reformed ✓ Must be linked to an equation showing MnO₂ as reactant and an equation showing MnO₂ as product		ALLOW combining of equations above to show that MnO_2 is used and reformed
(C) (i)	H ₃ C $-$ C O O O H \checkmark ALLOW skeletal OR displayed formula OR mixture of the above as long as non-ambiguous, e.g.	1	ALLOW $H_{3}C \longrightarrow O$ $O \longrightarrow OH$ $H_{3}C \longrightarrow OH$ $H_{3}C \longrightarrow OH$ $H_{3}C \longrightarrow OH$ $H_{3}C \longrightarrow OH$ $H_{3}C \longrightarrow OH$ $H_{3}C \longrightarrow OH$ OH

Question	Answer	Marks	Guidance
(C) (ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 0.023(125) (mol) award 3 marks for calculation	3	If there is an alternative answer, check for any ECF credit
	$ \frac{\mathcal{K}_{c} \text{ expression}}{(\mathcal{K}_{c} =) \frac{[CH_{3}COOOH]}{[H_{2}O_{2}] [CH_{3}COOH]}} \checkmark $		ALLOW 0.37 = $\frac{[CH_3COOOH]}{0.500 \times 0.500}$
	[CH ₃ COOOH] = 0.37 × 0.500 × 0.500 = 0.0925 (mol dm ⁻³) \checkmark		have been used
	Subsumes K_c expression $n(CH_2COOOH)$		Common errors 0.076 2 marks
	$= 0.0925 \times \frac{250}{1000} = 0.023(125) \text{ (mol) }\checkmark$		0.675 2 marks Use of 0.5 for $[H_2O]$ on K_c
			0.169 2 marks Inverted K _c
			0.338 1 mark Inverted K_c AND 0.5 for [H ₂ O]
			5.78 × 10 ⁻³ 2 marks × $\frac{250}{1000}$ before [CH ₃ COOOH]
	Total	14	

Question	Answer	Marks	AO Guidance	Guidance
Question	Allower	Marks	element	Cardanee
5	D	1	AO2.5	

Q	Question		Answer	Marks	Guidance
6	(a)		Ni: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ² ✓ Ni ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ ✓	2	ALLOW 4s before 3d, ie $1s^22s^22p^63s^23p^64s^23d^8$ ALLOW $1s^2$ written after answer prompt (<i>ie</i> $1s^2$ twice) ALLOW upper case D, etc and subscripts, e.g $4S_23D_8$ ALLOW for Ni ²⁺ $4s^0$ DO NOT ALLOW [Ar] as shorthand for $1s^22s^22p^63s^23p^6$ Look carefully at $1s^22s^22p^63s^23p^6$ – there may be a mistake
	(b)	(i)	Circuit:complete circuit AND voltmeter AND salt bridge linking two half-cells \checkmark Half cells:Pt AND ^ AND _2 \checkmark Ni AND Ni2+ \checkmark Standard conditions: 1 mol dm ⁻³ solutions AND 298 K / 25°C \checkmark	4	Voltmeter must be shown AND salt bridge must be labelled ALLOW small gaps in circuit ALLOW half cells drawn either way around IGNORE 2 before l ⁻ (aq) DO NOT ALLOW l ₂ (g) OR l ₂ (s) OR l ₂ (l) ALL conditions required BUT ALLOW 1 mol dm ⁻³ /1M if omitted here but shown for just one solution in diagram Look on diagram in addition to answer lines IGNORE pressure <i>Not relevant for this cell</i> DO NOT ALLOW 1 mol for concentration
	(b)	(ii)	$E = 0.79 (V) \checkmark$	1	IGNORE sign
	(c)	(i)	$H_2O_2(aq)$ + 2H ⁺ (aq) + 2Fe ²⁺ (aq) → 2Fe ³⁺⁻ (aq) + 2H ₂ O(I) ✓	1	ALLOW multiples IGNORE state symbols, even if wrong

Questi	ion	Answer	Marks	Guidance
(C)	(ii)	Equations $3Zn(s) + Cr_2O_7^{2-}(aq) + 14H^{+}(aq)$ $\rightarrow 3Zn^{2+}(aq) + 2Cr^{3+}(aq) + 7H_2O(I)$ \checkmark $Zn(s) + 2Cr^{3+}(aq) \rightarrow Zn^{2+}(aq) + 2Cr^{2+}(aq) \checkmark$	4	ALLOW multiples IGNORE state symbols, even if wrong
		Comparison of <i>E</i> values (seen once) <i>E</i> of Zn is more negative/less positive than <i>E</i> of $Cr_2O_7^{2-}$ OR <i>E</i> of Zn is more negative/less positive than <i>E</i> of Cr^{3+} \checkmark		ALLOW E_{cell} is (+) 2.09V for Zn/Cr ₂ O ₇ ²⁻ cell OR ALLOW E_{cell} is (+) 0.34V for Zn/Cr ³⁺ cell IGNORE 'lower/higher'
		Equilibrium shift related to <i>E</i> values More negative/less positive OR Zn system shifts left OR Less negative/more positive Cr ₂ O ₇ ^{2−} system shifts right OR Less negative/more positive Cr ³⁺ system shifts right ✓		For 'shifts left': ALLOW '(Zn) is oxidised' OR 'electrons are lost (from Zn)' For 'shifts right', ALLOW '(Cr) is reduced' OR 'electrons are gained'

Question	Answer	Marks	Guidance
	 Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) All three reactions are covered in detail with C, D, E and F identified with clear explanations. There is a well-developed line of reasoning which is clear and logically structured with clear chemical communication and few omissions. The information presented is relevant and substantiated. Level 2 (3–4 marks) All three reactions are covered but explanations may be incomplete OR Two reactions are explained in detail. There is an attempt at a logical structure with a line of reasoning. The information is relevant e.g. formulae may contain missing brackets or numbers and supported by some evidence. Level 1 (1–2 marks) Make two simple explanations from any one reaction. OR Makes one simple explanation from each of two reactions There is an attempt at a logical structure with a line of reasoning. The information is relevant e.g. formulae may contain missing brackets or numbers and supported by some evidence. Level 1 (1–2 marks) Make two simple explanations from any one reaction. OR Makes one simple explanation from each of two reactions There is an attempt at a logical structure with a line of reasoning The information is in the most part relevant. O marks No response worthy of credit. 	6	Indicative scientific points may include: REACTION 1 (CuSO ₄ /NH ₃) Product C : [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ Equation [Cu(H ₂ O) ₆] ²⁺ + 4NH ₃ \rightarrow [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ + 4H ₂ O Structure of trans stereoisomer $\begin{bmatrix} H_{2}O \\ H_{3}N/H_{3} \\ H_{2}O \end{bmatrix}^{2+}$ Correct connectivity REACTION 2 (Cu ₂ O/H ₂ SO ₄) Products D : CuSO ₄ OR [Cu(H ₂ O) ₆] ²⁺ E: Cu Equation Cu ₂ O + H ₂ SO ₄ \rightarrow CuSO ₄ + Cu + H ₂ O Oxidation numbers Cu(+1) \rightarrow Cu(+2) + Cu(0) REACTION 3 (CuO/HNO ₃) Equation CuO + 2HNO ₃ \rightarrow Cu(NO ₃) ₂ + H ₂ O Molar ratios Cu : H : N : O = $\frac{26.29}{63.5} : \frac{2.49}{1.0} : \frac{11.59}{14.0} : \frac{59.63}{16.0}$ Formula of F CuH ₆ N ₂ O ₉ F: Cu(NO ₃) ₂ •3H ₂ O (OR Cu(NO ₃) ₂ (H ₂ O) ₃)
		1	

Question	Answer	Marks	Guidance
			 Further guidance on use of wedges Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': For bond into paper, ALLOW: ''''''''''''''''''''''''''''''''''''
	Total	18	

Mark Scheme					
Question	Answer		Guidance		
(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.092 (mol dm ⁻³) award 3 marks $n(O_2) = \frac{55}{24000} = 2.29 \times 10^{-3} \text{ (mol)} \checkmark$ $n(H_2O_2) = 2.29 \times 10^{-3} \times 2 = 4.58 \times 10^{-3} \text{ (mol)} \checkmark$ $[H_2O_2] = \frac{4.58 \times 10^{-3} \times 1000}{50.0} = 0.092 \text{ (mol dm}^{-3}) \checkmark$ (2 SF)	3	ALLOW ECF throughout ALLOW 2 SF up to calculator value of 2.291666667 × 10 ⁻³ ALLOW calculation using ideal gas equation provided that $p = \sim 10^5$ Pa and T in range 293–298 K. ALLOW use of 8.31 for R (gives same answer) e.g. $n(O_2) = \frac{1 \times 10^5 \times 55 \times 10^{-6}}{8.314 \times 298} = 2.22 \times 10^{-3} \text{ (mol) } \checkmark$ $n(H_2O_2) = 2.22 \times 10^{-3} \times 2 = 4.44 \times 10^{-3} \text{ (mol) } \checkmark$ $[H_2O_2] = \frac{4.44 \times 10^{-3} \times 1000}{50.0} = 0.089 \text{ (mol dm}^{-3}) \checkmark$ (2 SF) NOTE: 293 K gives 0.090 (mol dm ⁻³) Common errors $0.046 \rightarrow 2 \text{ marks}$ $n_0 \times 2 \text{ for } n(H_2O_2)$		
(b)	$2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 8H_2O + 5O_2$ Correctly balanced equation for MnO_4^-/H_2O_2 reaction but no cancelling of H ⁺ and/or e ⁻ ✓ Overall equation correct with all species cancelled ✓	2	ALLOW multiples ALLOW = instead of → sign ALLOW 1 mark for final equation with correct balancing numbers AND ONE small slip in a formula OR charge IGNORE annotations around equations, i.e. treat as rough working ALLOW 1 mark for: $2H_2O_2 \rightarrow 2H_2O + O_2$ $(H_2O_2 \text{ is acting as both reducing and oxidising agent})$		

OCR (A) Chemistry A-Level - Redox and Electrode Potentials

Mark Scheme					
Question		Answer	Marks	Guidance	
(c)	(i)	Equation $[Co(H_2O)_6]^{2+} + 4CI^- \rightleftharpoons [CoCl_4]^{2-} + 6H_2O$ OR $[Co(H_2O)_6]^{2+} + 4HCI \rightleftharpoons [CoCl_4]^{2-} + 6H_2O + 4H^+ \checkmark$	1	ALLOW reverse equation: $[CoCl_4]^{2^-} + 6H_2O \Rightarrow [Co(H_2O)_6]^{2^+} + 4Cl^-$ but take care for subsequent explanations IGNORE state symbols (even if wrong) For $[CoCl_4]^{2^-}$, ALLOW $CoCl_4^{2^-}$, $(CoCl_4)^{2^-}$ For other representations, contact TL	
	(ii)	 Equilibrium shift equilibrium (shifts) to right at high temperature/100°C OR equilibrium shifts to left at low temperature/0°C ✓ CARE: Direction of shift depends on direction of equilibrium equation from 2c(i). Either look back or see the equation copied at bottom of 2c(ii) marking zone. Enthalpy change Endothermic ✓ 	2	Mark independently ALLOW suitable alternatives for 'to right' e.g. towards products OR in forward direction OR 'favours the right' ORA for 'to left' Temperature required but ALLOW 'in ice for low temperature OR 'in boiling/hot water' for high temperature IGNORE shift to blue side or pink side	
		Total	13		

Question	Answer	Marks	AO	Guidance
Question			element	Ouldance
8	C	1	AO2.1	

Q	uestior	Answer	Marks	AO element	Guidance
9	(a)	Circuit Complete circuit AND voltmeter AND salt bridge linking two half-cells ✓	3	3.4× 1	Voltmeter must be shown AND salt bridge must be labelled ALLOW small gaps in circuit
		Half cells Ag AND Ag ⁺ AND 1 mol dm ⁻³ solution ✓ Pt AND H ⁺ AND MnO4 ⁻ AND Mn ²⁺ AND 1 mol dm ⁻³ /equimolar solution ✓		1.2×1 1.2×1	If species in BOTH half cells are correct but concentration of 1 mol dm ⁻³ omitted, ALLOW 1 mark for BOTH half cells. ALLOW acidified as an alternative for H ⁺
					IGNORE stated pressure Not relevant here as no gas
	(b)	Comparison of E values <i>E</i> of redox system 4 (MnO₄ ⁻ /Mn ²⁺) is more positive/less negative than <i>E</i> of redox systems 2 (HCOOH/HCHO) OR 1 (CO ₂ /HCOOH)√	4	3.1×2	IGNORE higher/lower ALLOW Overall Ereaction = (+)1.54V OR (+)1.62V
		Equilibrium shift related to <i>E</i> values More negative/less positive/system 2 (HCOOH/HCHO) OR system 1 (CO ₂ /HCOOH) shifts left OR Less negative/more positive/system 4 (MnO _{4⁻} /Mn ²⁺) shifts right \checkmark • 2 and 4 2MnO _{4⁻} + 5HCHO + 6H ⁺ \rightarrow 2Mn ²⁺ + 5HCOOH + 3H ₂ O \checkmark • 1 and 4 2MnO _{4⁻} + 5HCOOH + 6H ⁺ \rightarrow 2Mn ²⁺ + 5CO ₂ + 8H ₂ O \checkmark		3.2×2	For 'shifts left', ALLOW 'is oxidised' OR 'electrons are lost ' OR 'reducing agent' For 'shifts right', ALLOW 'is reduced' OR 'electrons are gained' OR 'oxidising agent' IGNORE state symbols ALLOW multiples DO NOT ALLOW un-cancelled species, e.g. H+, on both sides ALLOW for 1 mark two balanced equations with uncancelled species.
					ALLOW combined equation for 2 marks: $4MnO4^{-} + 5HCHO + 12H^{+} \rightarrow 4Mn^{2+} + 5CO_{2} + 11H_{2}O$

OCR (A) Chemistry A-Level - Redox and Electrode Potentials

(Quest	ion	Answer	Marks	AO element	Guidance
	(c)		$2H^{+} + \frac{1}{2}O_{2} + 2e^{-} \rightarrow H_{2}O \checkmark$ 1.34 + (-0.11) = (+) <u>1.23</u> (V) \checkmark	2	2.6 2.2×1	IGNORE state symbols ALLOW multiples
			Total	9		